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• Resource-view weight: tons of TMR for 1kg of metal production

• Total Carbon Footprint (from  eco-sphere to a product)
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chemicals TCFP TMR chemicals TCFP TMR chemicals TCFP TMR chemicals TCFP TMR chemicals TCFP TMR

1,4-Butanediol 7.87E+01 8.93E+02 chilesin 1.19E+01 1.54E+02 hexane 4.75E+00 5.05E+01 nitrogen (N) 5.71E-01 7.95E+00 sodium chloride 1.04E+01 9.20E+01

2-Ethylene hexanol 8.71E+03 1.28E+05 chlorine (Cl) 2.08E+01 1.76E+02 High Purity Quartz 1.20E+02 1.35E+03 o Tetrahydrofuran 4.97E+01 5.53E+02 sodium cyanide 7.25E+00 7.77E+01

acetone 2.38E+01 3.29E+02 chromium (Cr) 1.47E+02 2.15E+03 High-purity silicon 4.09E+01 4.05E+02 ocean water 0.00E+00 1.00E+00 sodium fluoride (NaF) 5.62E+02 6.21E+03

acetylene 6.22E+01 7.03E+02 chromium concentrates 1.91E+01 4.31E+02 holmium oxide (HoO) 2.19E+06 2.89E+07 ore dressing 1.57E+01 3.47E+03 sodium hydroxide 1.89E+01 1.59E+02

activated charcoal 5.62E+00 4.10E+01 chromium nitrate 8.43E+01 1.69E+03 hydrochloric acid 1.01E+01 9.01E+01 Ore Mining 2.71E+00 3.99E+01 sodium hypochlorite 2.46E+01 2.05E+02

agrochemical 1.75E+01 5.18E+02 Cinnabar concentrates 2.55E+01 3.64E+02 hydrogen 6.00E+01 7.05E+02 Organic liquid waste treatment 1.21E+00 1.05E+01 sodium lauryl sulfate (sodium lauryl sulfate)4.00E+01 5.39E+03

air 0.00E+00 1.00E+00 coagulant 1.31E+01 1.11E+02 hydrogen fluoride 6.13E+02 6.79E+03 osmium (Os) 1.88E+07 2.77E+08 sorbitan 4.62E+01 2.19E+03

alcohol 4.22E+00 1.72E+03 coal 3.72E-01 9.59E+00 hydrogen peroxide 2.56E+00 2.25E+01 oxidized lantern 7.86E+03 1.04E+05 sorbitol (artificial sweetener) 3.45E+01 1.90E+03

allylbenzene 5.17E+00 5.60E+01 cobalt (Co) 6.29E+02 8.52E+03 ilmenite concentrate 1.93E+01 2.55E+02 oxygen 6.38E-01 9.99E+00 stearic acid 2.44E+01 2.75E+02

alumina 5.14E+00 1.64E+02 cobalt concentrate 4.52E+01 6.38E+02 indium (In) 5.21E+04 8.37E+05 palladium (Pd) 1.03E+05 1.44E+06 strontium carbonate (SrCO3) 5.79E+01 7.29E+02

aluminium fluoride 1.09E+03 1.21E+04 Coconut Fruit 2.58E+00 9.19E+02 Industrial Carbon 2.74E+01 3.52E+02 petroleum coke 7.32E+00 9.91E+01 sulfur (S) 6.06E+00 6.86E+01

aluminum (Al) 1.76E+02 2.14E+03 coconut oil 1.57E+01 4.52E+03 Industrial silicon 7.25E+01 8.12E+02 PGM concentrate 3.84E+04 5.65E+05 sulfuric acid 2.57E+00 2.51E+01

aluminum chloride 2.35E+01 2.54E+02 coke (carbon fuel) 2.51E+00 2.46E+01 iodine (I) 7.76E+03 3.50E+05 phosphate ore 1.23E+01 1.77E+02 Sulfurous acid gas treatment 8.84E+00 9.84E+01

ammonia 1.16E+01 1.41E+02 copper 3.44E+02 4.89E+03 iridium (Ir) 2.03E+07 2.99E+08 phosphoric acid (H3PO4) 7.30E+00 7.54E+01 surfactant 1.22E+01 1.23E+02

ammonium oxide 1.22E+01 1.36E+02 Copper anode mud 2.66E+03 3.82E+04 iron 1.06E+01 6.55E+01 phosphorus 1.06E+02 1.44E+03 tantalum (Ta) 6.86E+02 8.73E+03

ammonium sulfate 8.63E+00 8.51E+01 Copper catalyst 3.98E+02 5.72E+03 iron ore 1.01E+01 1.60E+02 PHS 9.27E+00 1.32E+02 Tantalum concentrate 4.82E+01 6.66E+02

antimony (Sb) 7.42E+01 9.20E+02 copper concentrate 9.68E+01 1.39E+03 iron powder 2.66E+00 1.06E+01 platinum (Pt) 1.49E+07 2.19E+08 tellurium (Te) 4.60E+04 6.61E+05

antimony concentrate 2.15E+01 2.90E+02 copper nitrate 3.50E+02 4.98E+03 iron sulfate 4.14E+00 3.13E+01 Pollack concentrate 2.03E+01 2.73E+02 terbium (Tb) 3.47E+05 4.58E+06

aqua regia 8.50E+00 7.74E+01 copper sulfate 2.74E+01 3.07E+02 isopropanol 5.65E+00 6.18E+01 polyaluminum chloride 6.73E+00 5.72E+01 tetrahydrofuran 1.19E+02 1.34E+03

argon (Ar) 2.20E+01 1.37E+04 Copper-Chromium Catalysts 4.28E+02 6.22E+03 Itria. 1.09E+04 1.43E+05 Polyether compounds 3.33E+03 4.90E+04 thallium (Tl) 8.57E+02 1.21E+04

arsenic (As) 2.45E+02 3.29E+03 cyanide disposal 5.93E+02 4.77E+03 kerosene 3.38E+01 3.92E+02 potassium chloride 1.21E+02 1.57E+03 thorium (Th) 2.92E+02 4.38E+03

arsenic concentrates 5.58E+01 7.61E+02 D2EHPA 1.07E+04 1.57E+05 krypton (Kr) 6.15E+01 1.29E+04 potassium hydroxide (KOH) 2.13E+02 2.75E+03 thorium concentrate 1.63E+00 3.14E+01

barite concentrate 1.30E+01 1.37E+02 defoamer 9.68E+02 1.42E+04 lauryl alcohol 3.57E+01 6.23E+03 praseodymium (Pr) 3.47E+04 4.59E+05 thulium oxide (TlO) 8.90E+06 1.18E+08

barium sulfate (BaSO4) (sulphate)2.27E+01 2.42E+02 deionized water 5.04E-01 4.16E+00 lead (the metal) 1.86E+01 2.52E+02 propylene 2.08E+00 1.67E+01 tin 3.94E+03 5.81E+04

bastne site 1.16E+02 1.58E+03 dichloromethylsilane 9.88E+00 1.06E+02 lead concentrate 8.69E+00 1.32E+02 propylene oxide 1.92E+04 2.82E+05 tinstone concentrate 2.78E+02 4.10E+03

bauxite 3.49E-01 7.73E+00 diethyl ether 1.29E+01 1.40E+02 limestone 4.64E+00 7.06E+01 quicklime 8.72E+00 1.03E+02 titanium (Ti) 4.15E+02 4.64E+03

benzene 2.63E+01 4.27E+02 dilute sulfuric acid 2.68E+00 2.76E+01 liquid nitrogen 2.62E+00 8.61E+02 Radioactive sludge treatment 3.89E+01 3.97E+02 toluene 2.63E+00 1.70E+01

beryl concentrate 6.86E+01 1.04E+03 dust treatment 5.29E+00 5.44E+01 lithium carbonate (Li2CO3) 1.75E+01 1.87E+02 Radioactive tailings processing 1.24E+02 1.64E+03 tributyl phosphorus 9.82E+00 1.07E+02

beryllium (Be) 1.37E+03 1.83E+04 dysprosium (Dy) 8.54E+04 1.13E+06 lithium chloride 2.57E+02 3.07E+03 radium (Ra) 3.01E+05 4.29E+06 tributylamine 6.07E+01 6.83E+02

bismuth (Bi) 5.49E+01 7.51E+02 erbium oxide (Erbium oxide) 2.69E+05 3.55E+06 Lithium concentrate 3.48E+01 4.20E+02 radon (Rn) 6.73E+05 9.86E+06 tributylphosphate 5.16E+03 7.59E+04

Bismuth concentrate 1.44E+01 2.03E+02 ethanol 5.77E+00 3.21E+03 lutetium oxide 1.55E+07 2.05E+08 Rare earth concentrates 1.55E+03 2.05E+04 Trioxide sulfate 5.99E+00 6.79E+01

borax 3.51E+01 4.89E+02 ethylene oxide 5.17E+00 3.75E+01 Magnesite concentrate 1.12E+01 1.40E+02 red-light district 1.38E+00 9.44E+01 tungsten (W) 1.18E+02 1.39E+03

boric acid 8.28E+01 1.08E+03 ethylenediamine 7.25E+00 7.77E+01 magnesium (Mg) 1.61E+02 1.75E+03 rhenium (Re) 5.57E+03 6.22E+04 Tungsten concentrate 1.80E+01 2.73E+02

bromine (Br) 5.30E+03 1.20E+05 ethylenediaminetetraacetic acid 7.25E+00 7.77E+01 magnesium chloride 3.86E+01 4.41E+02 rhodium (Rh) 1.49E+07 2.19E+08 uranium ore 3.88E+02 5.69E+03

butanol 6.46E+03 9.49E+04 europium oxide (EuO) 1.08E+05 1.42E+06 manganese (Mn) 5.30E+01 5.40E+02 rhodium catalyst 2.71E+07 3.99E+08 Uranium ore concentrate 4.23E+02 6.04E+03

butyl alcohol 3.55E+01 3.99E+02 Exhaust gas treatment 7.14E-01 3.40E+00 manganese concentrate 1.27E+01 1.68E+02 rubidium chloride 8.24E+03 1.21E+05 uranium oxide 1.77E+01 2.34E+02

butyraldehyde 6.48E+03 9.51E+04 Fe2O3 2.34E+01 3.43E+02 Membrane Cleaner 2.29E+01 2.16E+03 Rubidium-bearing concentrates 4.72E+02 6.93E+03 V2O5 1.30E+02 1.89E+03

cadmium (Cd) 5.16E+04 8.32E+05 fertilizer 7.90E+00 7.60E+01 mercury 1.90E+02 2.64E+03 ruthenium (Ru) 4.70E+06 6.92E+07 Vanadium concentrates 7.29E+01 1.07E+03

calcium carbide (CaC2) 1.83E+01 2.08E+02 flotation agent 4.69E+00 9.30E+02 methane 9.23E+00 1.41E+02 Salt Wastewater Treatment 3.27E+00 3.26E+01 VOC Treatment 5.24E+00 7.44E+01

calcium chloride 1.57E+01 1.84E+02 fluorine (F) 2.20E+03 2.45E+04 methanol 2.52E+00 4.91E+01 salt water 4.00E-01 1.81E+01 waste acid treatment 9.54E-01 5.88E+00

calcium hydroxide (Ca(OH)2) 7.31E+00 8.10E+01 Fluorine-containing liquid treatment4.66E+00 1.33E+02 methyl isobutyl ketone 6.75E+01 8.70E+02 saltwater 3.05E-01 6.89E+00 Waste Alkali Treatment 2.96E+00 3.10E+01

calcium metal 8.04E+01 8.81E+02 foaming agent 4.14E+01 4.46E+02 molybdenum (Mo) 5.25E+02 5.83E+03 samarium (Sm) 1.10E+05 1.46E+06 Wastewater Treatment 3.27E-01 1.33E+00

calcium sulfate (CaSO4) (sulphate)8.14E+00 9.92E+01 formaldehyde 6.58E+00 1.03E+02 molybdenum concentrate 2.41E+02 2.68E+03 scandium (Sc) 1.66E+04 2.25E+05 water (esp. cool, fresh water, e.g. drinking water)0.00E+00 1.00E+00

carbon dioxide 4.15E+00 3.39E+01 gadolinium oxide 5.39E+04 7.11E+05 money (written before an amount)1.61E+07 2.41E+08 selenium (Se) 1.57E+04 2.26E+05 xanthate 4.15E+01 6.58E+02

carbon disulfide 1.08E+01 9.90E+01 gallium (Ga) 1.30E+03 1.39E+04 natural gas 8.58E+00 1.35E+02 Silica concentrate 1.16E+01 1.51E+02 xenon (Xe) 1.20E+02 1.87E+04

carbon electrode 2.06E+01 2.60E+02 germanium (Ge) 5.33E+03 8.50E+04 Ne 1.64E+02 2.31E+03 silica sand 9.74E+00 1.41E+02 ytterbium oxide (YbO) 1.55E+06 2.05E+07

carbon monoxide 1.14E+01 1.53E+02 Glass matrix material 3.91E+01 4.76E+02 neodymium (Nd) 7.94E+03 1.04E+05 Silicone oil 3.56E+01 3.85E+02 zinc (Zn) 1.97E+02 3.03E+03

Celia. 3.88E+03 5.12E+04 glucose 1.88E+00 1.38E+03 nickel (Ni) 8.21E+02 1.15E+04 silver 2.71E+06 3.99E+07 zinc concentrate 7.28E+01 1.17E+03

cement 4.27E+00 2.72E+01 gold concentrate 6.07E+03 9.10E+04 Nickel concentrate 8.75E+01 1.25E+03 silver concentrate 3.83E+04 5.64E+05 zircon sand 4.18E+01 5.96E+02

Ceres concentrates 1.81E+01 2.65E+02 hafnium (Hf) 1.47E+03 1.76E+04 niobium (Nb) 3.01E+02 4.05E+03 Sludge treatment 9.29E-01 5.23E+00 zirconium (Zr) 1.72E+02 1.98E+03

cesium chloride 4.90E+03 7.11E+04 HCN 6.73E+00 7.42E+01 niobium concentrate 5.06E+01 6.37E+02 sodium (Na) 7.24E+01 7.58E+02

Cesium-containing concentrates 1.98E+02 2.89E+03 He 2.41E+03 4.18E+04 nitric acid 3.61E+00 3.92E+01 sodium carbonate (Na2CO3) 2.28E+01 2.00E+02



Total Material Requirement (TMR)

• Definition: TMR quantifies the total amount of 
materials extracted from nature to support an 
economy, including "hidden" material flows.

• Purpose: Developed to measure human reliance on 
natural resources and assess sustainability.

•Developed in the 1990s: Introduced as the “ecological 
rucksack” to represent the hidden environmental impacts of 
material extraction.

•Goal: Highlight the “invisible” resource usage and raise 
awareness of total environmental load.

•Pioneer of Footprint Concepts: Set the stage for various 
“footprint” metrics, focusing on resource dependency rather 
than direct environmental impact. 
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Evolution and Current Relevance of Total Material Requirement (TMR)

•Legacy of the TMR Concept
•Originated at Germany’s Wuppertal Institute and further developed by 

researchers like Halada from NIMS.

•TMR values were quantified and included as a supplementary indicator in 
Japan’s Basic Environmental Plan.

•Shift in Focus from Environmental to Economic Factors

•Discussions on resource use and recycling moved towards availability and 

efficient use within the human economy.

•TMR became seen as one environmental factor among others, not directly 

linked to toxicological impacts, which led to reduced emphasis on it in policy 

and academic debates.

•Reduced Attention in the Era of Circular Economy

•Despite the rising importance of material intensity in circular economy 

discussions, the TMR concept has largely faded from focus, except among a 

few dedicated researchers.

TMR remains a valuable concept for understanding resource impact, though it has been 

overshadowed by broader circular economy perspectives as the resource edge point.



Positioning TMR in a Nature-Positive World

•Growing Importance of Nature-Positive Goals: As nature-positive 
approaches gain prominence, it’s essential to assess and manage our true 

impact on natural resources, namely resource edge approach..

•TMR as a Comprehensive Metric: TMR captures the total material 

dependency, including hidden flows, providing a fuller picture of resource use 

beyond direct emissions or waste.

•Aligning TMR with Nature-Positive Actions: By reducing TMR, we directly 

support biodiversity, reduce habitat destruction, and promote sustainable 

resource management.

•Guiding Policy and Industry: TMR offers data for policies and business 

practices that align with nature-positive strategies, ensuring resources are used 

responsibly for a balanced, sustainable future.



Reasons Why TMR has been underutilized

•Ambiguity as an Environmental Indicator: TMR's role as an environmental 

load factor has been unclear, making it challenging to integrate into standard 

environmental impact assessments.

•Complex Data Requirements: Calculating TMR requires extensive data on 

hidden material flows, which was difficult to obtain and often incomplete.

•Limited Awareness and Focus: With more attention on metrics like carbon 

footprint, TMR was overshadowed and not widely adopted in sustainability 

practices.

•Lack of Standardization: Without standardized methods or frameworks, it was 

hard to apply TMR consistently across industries or regions.

•Data Accessibility: In the past, TMR calculations were reliant on limited data 

sources, but recent open data and AI advancements are changing this



Challenges in TMR Data Collection and the Role of 
Generative AI

• Challenges in Widespread Adoption of TMR
• Data Complexity:.
• Boundary Data Limitations:

• The Game Changer: Emergence of Generative AI (Large 
Language Models)
• While often referred to as "generative," these AI systems fundamentally 

perform large-scale language processing grounded in extensive data 
mining.

• Through careful prompting, these AI models can be guided to conduct 
targeted data mining, enabling access to previously inaccessible data, 
such as specific mining and waste management information on each 
specific site..

• New Potential with Data Mining AI
• By leveraging data mining capabilities in generative AI, we can obtain 

essential data for TMR calculations that was previously out of reach.
• This approach, termed Data Mining AI, represents a powerful tool for 

advancing TMR research and improving resource efficiency assessments.



Benefits of Using Generative AI for Data Mining in TMR
• Main Advantages of Generative AI in Data Mining

• Pattern and Trend Discovery: Identifies hidden patterns and 
trends from large amounts of unstructured data, filling in 
details not covered by existing databases.

• Real-Time Analysis: Processes global information in real-time, 
allowing rapid adaptation to new technologies and market 
shifts.

• Cost-Effective Data Collection: Offers high-precision estimates 
even when field data collection is challenging, reducing costs 
and effort.

• Beyond Traditional Data Processing
• Generative AI surpasses traditional data processing limitations, 

providing integrated insights into complex systems and detailed 
processes including process-solvents and waste management.

• In TMR assessments for products with advanced technologies, 
AI-driven estimates offer detailed understanding of 
environmental impacts across production stages until resource 
edges.



Considerations and Challenges of Using Generative AI in LCA Data Mining

1. Accuracy of AI Predictions

•Generative AI relies on past data to make predictions, but accuracy heavily 

depends on data quality.

•Process data required for LCA varies greatly by industry, and tracking latest 

technologies and operations can be difficult.

•Human expertise is essential to validate AI predictions to ensure reliability.

2. Transparency and Interpretability

•AI models often act as "black boxes," making it hard to understand their 

decision-making process.
•LCA requires transparency and reproducibility, and lack of clarity in AI’s 

outputs can undermine result credibility.

3. Potential for Bias

•AI predictions depend on the datasets it learns from; if biased, AI results may 

be skewed.

•This can lead to unfair outcomes for certain countries or companies, or 

underestimations of true environmental impacts.



Addressing Challenges in Using Generative AI for LCA Data Mining

•Balancing Opportunities and Challenges

•Using generative AI for LCA data mining presents new opportunities but also 

introduces challenges related to accuracy, transparency, and bias.
•It is crucial to understand AI’s limitations and strengthen collaboration with human 

expertise to effectively address these challenges.

•Strategies for Effective AI Utilization

1.Setting Data Ranges for Uncertainty

•AI provides not only a single estimate but also upper and lower bounds.

•This allows LCA calculations to consider uncertainties, providing scenarios for 

both best and worst-case outcomes.

2.Expert Validation of AI Estimates

•Experts in LCA and production processes validate AI-derived data, discarding or 

adjusting any inappropriate results.
•Example: Specialists review AI’s estimates for rare metal usage against 

historical data and current technology trends.

3.Reducing Bias Through Prompt Engineering

•The AI is fed diverse data sources to prevent reliance on a single viewpoint.



Enhancing Data Quality in LCA with Advanced Prompt Engineering for Generative AI

• Prompt Engineering Strategies for Generative AI
• Specialist Perspective

• Specified AI as a “resource and materials engineering expert familiar with LCA, 
industry practices, and patents.”

• Limited search scope to high-quality, specialized information, reducing the 
influence of general blogs or non-expert articles.

• Focusing on Established Industrial Methods
• Added prompts specifying “common industrial methods for obtaining target 

material.”
• Ensured focus on commercially viable, practical data, reducing the risk of including 

lab-scale or speculative research data.
• Validation of Numerical Outputs

• When AI’s estimates diverged significantly from expert knowledge, prompted AI to 
generate reaction names or equations.

• This helped confirm data relevance, reducing the chance of unrelated information 
mixing into AI outputs.

• Outcome and Benefits
• Combining generative AI’s capabilities with expert input and diversified 

data sources ensures high-quality, reliable data for CFP analysis.
• This approach enhances the accuracy of LCA results by managing 

uncertainties and mitigating bias, making it a robust tool for assessing 
complex materials.













https://lca.sdgoods.net/tmr-tcfp/
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Transition from CFP to TCFP for Comprehensive Resource Impact Analysis

• Why TCFP (Total Carbon Footprint) Instead of CFP
• TCFP extends calculations to the resource extraction phase, 

avoiding arbitrary boundary settings and cut-offs used in 
traditional CFP.

• This broader approach yields higher values, providing a more 
accurate assessment and reducing confusion with conventional, 
limited-scope CFP metrics.

• Traditional CFP mostly covers Scope 1 and 2 emissions of 
energy; TCFP captures Scope 3 of energy by tracking resources 
to their resource edge.

• This comprehensive approach overcomes limitations of 
arbitrary “system boundaries,” providing a more accurate 
footprint

Footer: TCFP offers a full-spectrum view of environmental impact 
by tracing resource use from origin to final application, enhancing 
transparency and accuracy in carbon assessments..



•Recalculated TMR

•Collaboration between data-mining AI and engineering experts

provided TMR values for all elements and accepted chemicals, 

with open data and calculation basis.

•Application to Total CFP

•Expanded system boundary to resource origins at the Earth-
human economy interface, overcoming “system boundary”
limitations.

•Integrated process materials and waste treatment, often 

overlooked in traditional CFP.

•Extended energy calculations beyond Scope 1, accounting for 

impacts up to resource origin.

•Outcome

•Transformed footprint calculations into an open data 

discussion, engaging wider audiences beyond LCA specialists.



• Thank you!  and 
  Please  open https://lca.sdgoods.net/tmr-tcfp/

I introduce you to a Open-data and Open Discussion System for TMR and TCFP !





Recycling issue: →   exchange efference flow

• B=∑pi*bi ← LCAの基本式
• =∑pi*bi+p3*b3+n4*Q’4*b4+(n2-p4/Q4)*Q5*b5
     i=1,2

• =S2+ p3*b3+p4*b4+(n2-m4)Q5*b5
• =∑pi*bi +(n2-m4)Q5*b5
      1=1,4

• =S4+p3(1/Q’3-m’4)Q5*b5

• =S4+p3(1/Q’3-r*1*Q’4/Q4)Q5*b5

p1*b1

p3*b3 p2*b2

p4*b4

r*p3

m3(Q3*m3→p3) m2

m4  p3=1の時供給m4’ m5, m5’

pi=Qi*mi
   =Q’i*ni

n3(p3=1のとき=1/Q’3)

n4=r*p3

p5*b5
静脈側の4は、供給ではなく処理プロセスと
して3からの発生物処理となる。

供給として3は4を要求しない

3の単位操作の要求構成5の量として、単位操
作時の5への要求量から4処理プロセスから(2
の単位操作で)供給される分を引く。

プロセス3から出たリサイクル物がブロセス4を経て、プロセス5とともに
プロセス3に循環する場合

pi:プロセス量
bi:単位ブロセスでの負荷
mi:物質量
ni:入口側物質量
Qi:物質量が1のときのプロセス量
r: 単位プロセスでのリサイクル量



Recursion problem

H2 CH4

H2O

natural 
gas

gas
mining

amine NH4 H2

Excel gives error of circulation.

Then, change recrded H2 into “rH2“ as another 
materal
.
And, Manually enter the value of H2 into the rH2 
unit.If this changes the footprint value of H2, enter the 
new value.

Repeat this process until the error range is within the 
acceptable range.
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